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Subimage Sensitive Eigenvalue Spectra for Image Comparison
Can One Hear what’s Painted on a Drum?

Benjamin Berger · Alexander Vais · Franz-Erich Wolter

Abstract This publication is a contribution to basic

research in image comparison using eigenvalue spec-

tra as features. The differential-geometric approach of

eigenvalue spectrum based descriptors is naturally ap-

plicable to shape data, but so far little work has been

done to transfer it to the setting of image data painted

on a rectangle or general curved surface. We present

a new semi-global feature descriptor that also contains

information about geometry of shapes visible in the im-

age. This may not only improve the performance of the

resulting distance measures, but may even enable us

to approach the partial matching problem using eigen-

value spectra, which were previously only considered as

global feature descriptors. We introduce some concepts

that are useful in designing and understanding the be-

havior of similar fingerprinting algorithms for images

(and surfaces) and discuss some preliminary results.

Keywords Laplace · eigenvalue · fingerprint · image

retrieval · image comparison · partial matching ·
perturbation theory

1 Introduction

1.1 Motivation

The need for distance comparison of data arises for mul-

tiple reasons, among them organization of data collec-

tions, data retrieval using search engines and ranking of
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results, detection of near-duplicates (e.g. for legal pur-

poses) and classification. A very direct way to check

if a geometric object is possibly an illegal duplication

can be realized by directly employing shape matching

techniques that have been used for manufacturing pre-

cision quality control, see e.g. [12] for an early contri-

bution regarding complicated free form objects. Those

direct shape comparison methods could be applied for

image comparisons as well e.g. via comparing shapes

of surfaces corresponding to grey value images. In this

context the usage of intrinsic shape features of a sur-

face such as information on stable umbilical points to-

gether with their respective type classification (star,

monstar, lemon) had been suggested in [31], section

4.2 and later on developed in detail in [17,16]. Actu-

ally the approach considered there is a shape match-

ing method combining feature extraction (via umbilical
points) with wire frame matching where the wire frames

are obtained from curvature lines and geodesics. Direct

shape matching procedures are considered to be com-

putationally expensive. Therefore a key idea employed

to make these applications efficient is not to directly

compare the data objects themselves, but instead re-

duced representations thereof which take less storage

space while retaining information about relevant fea-

tures, ideally in a form that reduces the computational

cost of comparison and retrieval. In the case of geome-

try data, the eigenvalue spectrum of the Laplacian has

been successfully employed for this purpose. This tech-

nique has also been applied in the setting of image data.

The motivation of our work is to improve on the us-

age of Laplacian eigendecompositions for image finger-

printing in several ways. We consider a wider range of

differential operators than before and provide a better

understanding of the way information present in the

image affects the eigenvalue spectrum. This will enable
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the deliberate construction of fingerprinting algorithms

with desired properties. A specific property we have

in mind is the ability to represent information about

parts of the image in the fingerprint, thus respecting

partial correspondences better than a purely global fea-

ture extraction method would. We also go beyond the

mere eigenvalue spectrum and consider certain interre-

lations of the eigenfunctions and how these could be

used for partial matching [3]. Contrary to approaches

relying on local descriptors, we want to avoid the ex-

traction of discrete features in order to achieve conti-

nuity of the distance measure, which we expect to be

beneficial to applications where robustness is required.

Lastly, although we are currently more concerned with

the transfer of shape matching techniques to flat im-

ages, the differential geometric formulation should al-

low for transfer of our findings back to curved shapes

that carry color or other data besides geometry on their

surface.

1.2 Background

Methods for image indexing in general are based on the

extraction of global or local features, such as color his-

tograms or textures and shapes. Global features per-

tain to the entire image, whereas local features need

to be determined as relevant and are associated to a

certain location. The features are extracted from the

input in the form of feature descriptors, which offer a

compact representation of the feature that is often cho-

sen to be invariant under certain input transformations

such as rotation and scaling. Several successful meth-

ods for generating local descriptors [21] utilize the Scale

Invariant Feature Transform [21,15], but many other

algorithms are in use as well, e.g. [32,22].

Global descriptors enable comparison of images but

usually do not contain high-level descriptions of local

aspects. The comparison of images is then done indi-

rectly, by comparing their descriptors. Local descrip-

tors additionally offer the possibility to compare only

parts of the described images by means of constructing

a correspondence between their local features. Impor-

tant approaches to this are described in [4,29]. If these

methods are used for image retrieval, they require a

classification step for local features in order to be able

to generate candidates for partial comparison.

1.3 Eigenvalue fingerprints for shapes

One specific class of global feature descriptors is derived

from the Laplacian. For scalar-valued functions on Rie-

mannian manifolds, the generalization of the Laplacian

is also called Laplace-Beltrami operator. Its spectrum

has been employed as a global fingerprint of the ge-

ometry data given by the manifold [26,27]. Since the

Laplace-Beltrami operator is defined as the divergence

of the gradient, it uses only notions of internal geometry

and is thus invariant under isometries. The spectrum

of the Laplace-Beltrami operator is known to contain

specific information about the manifold, such as area,

boundary length and Euler characteristic [19,1]. Nu-

merical experiments have shown that these features can

well be approximated using a finite prefix of the spec-

trum [25]. Eigenvalues are naturally related to scale in

that variation of small-scale features has little effect on

the lower eigenvalues. This means that the more promi-

nent, large-scale features of the geometry are robustly

represented in the first few eigenvalues. Although pairs

of nonisometric but isospectral manifolds exist [13,8],

they seem to be an exception with little practical im-

pact on the usefulness of the spectrum to distinguish

manifolds: The fingerprints obtained from the Laplace-

Beltrami operator, under the name “Shape-DNA”, have

been used quite successfully for shape classification [18].

It should be noted that, aside from its use for finger-

printing, the Laplacian eigenvalues and eigenfunctions

are employed for various tasks of geometry processing

and shape analysis.

If the manifold we are considering has a boundary,

we will need to impose some boundary condition on

it. We think of boundary conditions as an additional

property associated to a manifold’s boundary, but for-

mally a boundary condition is rather a predicate that

restricts, by locally prescribing properties of functions,

the set of functions on the manifold we are going to con-

sider when we solve the eigenvalue problem. Without

boundary conditions, the spectrum cannot be expected

to be discrete. Two important kinds of boundary con-

dition are the Dirichlet boundary condition, which in

our case requires function values to approach zero near

the boundary, and the Neumann boundary condition,

which requires the directional derivative in the direction

perpendicular to the boundary to approach zero.

In physics, the Laplacian is used in the wave equa-

tion and the heat equation [5], among others. In its

simplest form, the wave equation is stated as

∂2f

∂t2
= div grad f

while the heat equation is

∂f

∂t
= div grad f.

These equations describe the time evolution of a scalar

function. If this function at t = 0 is a Laplacian ei-

genfunction with eigenvalue λ, the time evolution of
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the heat equation can be given explicitly as f(t) =

e−λtf(0), with the time variable being separated. There-

fore the eigendecomposition of the Laplacian provides

the fundamental solution to the heat equation: The

amount of heat that has flown from x1 to x2 in time t

can be expressed by the heat kernel H as H(x1, x2, t),

see e.g. [9,28]. Evaluating the heat kernel is straightfor-

ward using the previous explicit time evolution formula

and the principle of superposition. The same approach

can be applied to the wave equation. In that case, the

eigenvalues are proportional to the square of the phys-

ical frequency. Thus physics provides at least two help-

ful visualizations of Laplacian eigenfunctions: One can

think of them as the forms of stationary waves, or as

the stationary distributions of some diffusing quantity

such as heat that do not change their form while they

decay at a rate given by the eigenvalue.

The heat equation interpretation has given rise to at

least two other descriptors: heat kernel signature and

heat trace. The heat kernel signature is a descriptor

for points on a manifold that captures their surround-

ings at all scales. Intuitively, it is the time-evolution of

the amount of heat that remains at point x, which is

H(x, x, t) in terms of the heat kernel. Small-scale geo-

metric features in the immediate neighbourhood of x

dominate the early evolution of heat flow, while for

larger t, coarser features that are far away have the

most influence. This is in accordance with the fact that

the higher eigenvalues, related to eigenfunctions of high

spatial frequency and sensitive to small-scale features,

lead to a faster decay (given by e−λt) of the contribution

of their eigenfunction to the heat kernel. For more detail

on the relation between the heat kernel and manifold

geometry, see [20]. The heat trace is a global descriptor

of the manifold, given by
∫
H(x, x, t) dx.

1.4 Transfer of the method to images

So far, we have explained how the spectrum of the

Laplacian was used as a feature descriptor for mani-

folds. In order to use a similar method for image finger-

printing, one may attempt different strategies. Ideally

in such an approach, properties of the Laplacian spec-

trum which make it useful as a descriptor for shapes and

surfaces carry over to the setting of image data. We will

represent images of width w and height h as continuous

functions g : Ω → C, where Ω := [0, w]×[0, h] is the

rectangle containing the image and C is the space of

colors (simply R in the case of grey scale images).

One approach was to to convert a grey scale image

into a two-dimensional manifold and then to apply the

Shape-DNA concept to the resulting shape [24]: The

image of the function m : [0, w]×[0, h]→ R3,m(x, y) =

(x, y, g(x, y)) is then a two-dimensional manifold em-

bedded into three-dimensional space. After equipping

its boundary with e.g. Neumann boundary conditions,

the eigenvalue problem for the Laplace-Beltrami opera-

tor on that manifold can be stated and yields a discrete

spectrum of eigenvalues as its solution. A historical

overview explaining how and where Laplace-Beltrami

spectra have been used to identify shapes and images

is given in [30].

When viewed in parameter space, the Laplace-Belt-

rami operator appears formally similar to the Euclidean

Laplacian with extra factors. The effect of these factors

is that they make the local behavior of the differential

operator depend on local image data. This is how data

from the image can have an influence on the resulting

eigenvalue spectrum. However, several other choices for

modification terms inserted into the Laplacian will also

do this, and may yield a fingerprinting algorithm that

is better in some respect.

One particular way to modify the Laplacian was

presented in [23]. There, the differential operator has

the form − 1
ρ(g(x,y)) ∆, where ρ : R → R+ is a function

that maps colors to so-called mass densities. The back-

ground is that this differential operator describes the

propagation of transversal waves in an elastic medium

of varying density. This density is controlled locally by

the color of the input image and affects the local condi-

tions of wave propagation, thereby influencing the pos-

sible frequencies of global stationary waves. The squares

of these frequencies are the eigenvalues. A very similar

approach was used in [33] in the context of curve match-

ing with the intention of enhancing an eigenvalue-based

curve descriptor by including greyvalue data from the

interior of the curve in the calculation. These two appli-

cations of modified Laplacian spectra use a linear map-

ping from color to mass density and do not attempt to

modify e.g. the elasticity of the membrane. While this

is the most straightforward way to achieve some effect

of image data on eigenvalues, it was not clear how (or if

at all) this effect is related in a meaningful way to local

features of the data.

2 General considerations

There is another, on first sight quite different idea how

images can be related to shapes: The Laplacian spec-

trum is not only a viable fingerprint for curved mani-

folds, but also for flat shapes, that is, compact subman-

ifolds of R2 equipped with boundary conditions. When

using the Laplacian spectrum as a fingerprint for com-

parison of flat shapes, the interior of the shape is ir-

relevant: the only sources of information represented in

the spectrum are the boundary of the shape and the
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boundary conditions imposed thereon. Now, let us as-

sume that from an image we have obtained a segmen-

tation, that is a collection of flat shapes whose union

is the image domain and whose pairwise intersection is

at most one-dimensional. These shapes are supposed to

represent visible features in the image in a meaningful

way, i.e. a visible edge in the input image should likely

lead to a shape boundary in the segmentation. If we

solve the Laplacian eigenvalue problem with the solu-

tion eigenfunctions constrained e.g. to be zero along the

shapes’ boundaries, we obtain a spectrum-fingerprint

that contains information about all of the shapes. Ac-

tually, the total spectrum will be the multiset-union

of the Laplace-spectra of all the shapes regarded sepa-

rately. This means that, for example, the presence of a

square shape in the collection of shapes will manifest it-

self in the spectrum as a subset of eigenvalues which are

common multiples of the sums of two square numbers,

since that is the analytical expression for the Laplacian

eigenvalues on a square. This approach, as presented,

seems not very viable due to some undesirable proper-

ties:

– It is not clear how to obtain the segmentation.

– The segmentation procedure will need to make a

discrete decision for each image point, thus losing

continuous dependence of the fingerprint on the in-

put image.

– Image features that fall below the given segmenta-

tion threshold will be ignored completely, having no

eventual effect on the fingerprint.

– The solutions of the eigenvalue problem belonging

to different shapes are independent, regardless of

whether they are adjacent and if so, whether the

separation between them resulted from a pronounced

gradient in the input image or from an image feature

that barely was above the segmentation threshold.

Nevertheless, this line of thinking points in a promising

direction, because the spectrum is not simply a global

feature descriptor, but retains information about the

individual shapes in the image.

Now, we will give some general considerations on

how we can treat subareas in the input image as shapes,

so that the approximate spectral signature of the shapes

can be found in the global fingerprint, while avoiding

a discrete segmentation step. We will not yet present a

concrete example and also not go into rigorous mathe-

matical detail; instead we wish to present the aspects

that have to be taken into account when designing a

distance function based on our general approach.

In order to avoid the segmentation step, it is nec-

essary that the eigenvalue problems of the individual

shapes are not completely decoupled. Also the decou-

pling should decrease as the distinction between the

shapes in the original image becomes more blurred, al-

lowing for a seamless transition from sharp boundary

and weak coupling to absent boundary and full cou-

pling. For simplicity, we will assume that edge sharp-

ness is reliably detected by the grey-value gradient.

It will turn out that after doing the transition from

all-or-nothing segmentation to gradual boundaries, the

total spectrum can at least for weak coupling still be

regarded approximately as the union of the spectra of

the individual shapes, with distortions of the subspectra

depending on the coupling between the subshapes. The

stronger the coupling between some shapes is (due to

low gradient or long common boundary), the more their

spectra meld into a single descriptor that depends on

all the information within them, but does not allow for

ascription of eigenvalues to individual shapes.

Although the idealized situation of completely de-

coupled Laplacian eigenvalue problems on crisply seg-

mented subshapes is impractical for fingerprinting, we

find that it provides a good starting point for thinking

about the behavior of the more fuzzy segmentations we

prefer. Therefore, in the following descriptions, we will

often mentally make the transition from the former set-

ting to the latter. In terms of the operators, discretized

to become matrices, this transition corresponds to the

introduction of matrix entries that couple previously

independent sets of basis directions.

2.1 Physical motivation

The descriptions of dynamics of physical processes such

as wave propagation, heat conduction and movement

of quantum particles all involve some linear differential

operator based on the Laplacian. If this operator can

be separated into a time part and a space part, find-

ing the eigenvalues and eigenvectors of the space part

gives the fundamental solution to the whole problem.

This gives a direct correspondence between the dynam-

ics of physical systems and the eigendecomposition of

the operator that describes it. If a physical system is

composed of non-interacting subsystems, the operator

can be broken into parts that can be diagonalized in-

dependently for each subsystem. In a similar setting,

where the walls between the subsystems are softened

and weak interaction is possible, one might expect that

the eigendecomposition is still approximately the same

as if there were no interaction, because the dynamics

within one subsystem is only slightly disturbed by the

presence of the others. This is indeed true for eigenval-

ues, but not always for the eigenfunctions; more on that

will follow in subsection 2.5.
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2.2 Softening the boundaries

What we need is something like a softened boundary

condition. One way to turn hard constraints into softer

ones, applicable to optimization problems, is to replace

a constraint that prohibits an unwanted property of the

solution by an additional cost term that penalizes the

unwanted property. The softness of the constraint with

respect to other aspects of the goal function can then

be regulated by a factor before the penalization term.

Regarding eigenvalue problems, it is indeed possible to

rephrase them as optimization problems by means of

the Rayleigh quotient, as explained below. The chal-

lenge is then how to incorporate the penalty terms for

the softened constraints into the linear operator, so that

the optimization problem remains an eigenvalue prob-

lem.

The generalized eigenvalue problem for a linear op-

erator B−1A is stated in Dirac notation [7] as

A |vi〉 = λiB |vi〉 ,

where |vi〉 in Dirac notation is the same as the eigenvec-

tor vi, both A and B are self-adjoint and B is positive

definite. Multiplying both sides from the left by the

transposed eigenvector, in Dirac notation 〈vi| := v†i ,

and isolating λi, we obtain

λi =
〈vi|A|vi〉
〈vi|B|vi〉

.

The expression on the right is called a Rayleigh quo-

tient, and choosing a vector v1 under the constraint

∀i: |vi| = 1 so that the Rayleigh quotient is mini-

mized yields a first eigenvector v1 and the first eigen-

value λ1. Subsequent eigenpairs (λi, vi) can be found

by minimizing the Rayleigh quotient under the addi-

tional constraint that for all indices j < i, it is true

that 〈vj |B|vi〉 = 0, so that the eigenvectors have to be

orthogonal with respect to the inner product induced

by B.

Using the Rayleigh quotient allows us to reason about

the behavior of eigenfunctions intuitively. Consider, for

example, the Laplacian modified by a mass density term:

B−1A = − 1
ρ ∆, where A = −div grad, B = ρ. The

Rayleigh quotient in this case is

〈v|(−div grad)|v〉
〈v|ρ|v〉

.

Provided there are Neumann or Dirichlet boundary con-

ditions on the domain Ω, we can assume that the ad-

joint of div is (− grad), so we can write the quotient

as
〈grad v|grad v〉
〈v|ρ|v〉

or, spelled out as an integral,∫
Ω
|(grad v)(x)|2 dx∫
Ω
ρ|v(x)|2 dx

.

From this expression, one can easily read off some prop-

erties of the eigenfunctions: a property that increases

the numerator will be suppressed, while a property that

increases the denominator will be enhanced in the so-

lution to the optimization problem. For example, high

gradients are avoided because they increase the numer-

ator. High absolute values will increase the denomina-

tor, but can only be attained uniformly if there are

neither boundary conditions enforcing low values near

the boundary, nor are there constraints of orthogonal-

ity to a previously computed eigenvector. Also, high

absolute values increase the denominator more if they

occur in regions where ρ is also large. In those regions,

the eigenfunction will tend to have a smaller absolute

value (and correspondingly smaller gradient), because

then the contributions by the gradient to the numerator

can be smaller while the contributions to the denom-

inator can stay of roughly the same size. A region of

very high ρ will therefore cause the eigenfunctions to

attain small absolute values within itself (and, due to

the small-gradient-constraint from the numerator, also

next to it). On the outside of that region, eigenfunctions

will behave similarly to a situation where the boundary

of that region has a Dirichlet boundary condition.

The preceding paragraph sought to illustrate what

we call a soft Dirichlet-like boundary condition: If a

Rayleigh quotient can be made to decrease by choosing

small absolute values for v along or near a curve in the

domain, that curve is said to impose a soft Dirichlet-

like boundary condition. Conversely, if a Rayleigh quo-

tient for an operator under consideration can be de-

creased as a result of grad v being small in the direction

perpendicular to a curve in the domain, the curve has

a soft Neumann-like boundary condition. In the limit

case where the Rayleigh quotient cannot attain its min-

imum as long as v 6= 0 somewhere along the curve, the

boundary condition is no longer soft and becomes a

real Dirichlet boundary condition, and similarly so for

Neumann boundary conditions.

2.3 Quantifying localization of eigenfunctions

One major concept we need for our approach is that

of the localization of eigenfunctions. The idea is that

the eigenfunctions are somehow more present at certain

places than at others. To formalize this, we associate to

each function v a localization density L(v), which is a

function defined on the domain Ω. Then L(v)(x) tells
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up to a scaling factor “how much” of v is present at

the point x. The degree of localization of v inside a

subdomain A ⊂ Ω we define as∫
A
L(v)(x) dx∫

Ω
L(v)(x) dx

.

A few formal requirements we propose for a local-

ization density function L are:

– L(v) must be defined on all Ω, with the possible ex-

ceptions of measure zero sets, as these do not really

matter for the integrals used here.

– L(v) must be non-negative everywhere.

– L(v) must be integrable.

– The concept of colocalization introduced below also

requires square-integrability.

–
∫
Ω
L(v)(x) dx must be positive.

– L(v) should depend locally and quadratically on v.

That is, L(v)(x) is the result of applying a scalar

valued quadratic function QL,x to a vector w con-

taining the value and some (arbitrary order) deriva-

tives of v at x. The definition of QL,x depends on L
and x, and QL,x(w) should depend quadratically on

the magnitude of w: ∀c ∈ R : QL,x(cw) = c2Q(w).

The rationale for this requirement is that we think

that a function of w captures the intuition of “how

much is happening with v at x”, while making the

dependence quadratical is a reasonable restriction

that still allows for smoothness and the direct defini-

tion of L as a quadratic form, which is an important

special case.

To be meaningful for our application, a localization

density function should also fulfill other criteria which

are not easily formalizable as those will depend on the
differential operator that we use to find the eigenfunc-

tion v. Essentially, L(v)(x) should answer the question

“how sensitive is the eigenvalue belonging to v to per-

turbations of the differential operator in a small neigh-

bourhood of x”: The more an eigenfunction is present at

x, the greater the impact of a locally restricted change

of the operator (which in our setting is derived from

the input image) will be. Note that Rayleigh quotients

of differential operators basically are quotients of in-

tegrals where the integrands are locally applied qua-

dratic forms of v and its derivatives. Also changes to

the quadratic forms in these integrands have an impact

on the eigenvalue, but the strength will depend on the

magnitude of the involved derivatives of v: If e.g. the

quadratic form uses only first derivatives, but the or-

der of magnitude of grad v is ε near x, then changing

the coefficients of the quadratic form near x can effect

only a change proportional to ε2 to the overall integral,

and so the influence on the eigenvalue, which is deter-

mined through minimization of the Rayleigh quotient,

is also limited. Therefore we argue that the integrands

appearing in the Rayleigh quotient of an operator are a

good starting point for meaningful localization density

functions to be used with that operator.

Localization densities of eigenfunctions also allow

us to capture some information that is lost when the

spectra of subshapes get merged: From an eigenvalue

alone one cannot tell where it came from. Neither can

we tell for a pair of eigenvalues whether they belong to

she same subshape or not. Localization densities can be

used to compute a single number answering the latter

question without the need to store entire localization

density measures. For this, we calculate the overlap,

or colocalization, of the localization densities of eigen-

functions v and w, which we denote by ColocL(v, w)

and define by the expression∫
Ω
L(v)(x) · L(w)(x) dx√∫

Ω
(L(v)(x))

2
dx ·

√∫
Ω

(L(w)(x))
2

dx
.

A colocalization close to 1 means that v is strongly

localized wherever w is and vice versa. This happens

usually when v and w are localized on the same sub-

shape, although certain near-degenerate situations, as

described in subsection 2.5, can cause this too. Note

that ColocL(v, w) is the cosine of the angle between

L(v) and L(w), interpreted as vectors in a Hilbert space.

Therefore cos−1 ◦ColocL gives a metric on the func-

tions on Ω.

Augmenting the spectrum with a matrix that for

each pair of eigenvalues tells the colocalization of the

corresponding eigenfunction, we obtain a fingerprint

that includes most of the missing information about

eigenvalue origin. This colocalization matrix can also

be plotted as a graph where nodes correspond to ei-

genfunctions and are aligned so that pairs of eigenfunc-

tions with high colocalization are represented closely to-

gether. This graph should then display clusters of nodes

corresponding to shapes in the input image.

2.4 Effect of interacting regions on eigenvalues

Coming from the idealized situation where the domain

is clearly partitioned into subregions whose eigenvalues

can be determined independently, we wish to under-

stand what happens to the eigenvalues if the bound-

aries between the regions are softened. In particular,

we want to find out in how far semantic information

(in the form of the Laplace-spectra of the shapes) is

preserved when the boundary conditions are no longer

strictly enforced. A discretization of the differential op-

erator for the idealized situation can be written as a
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block diagonal matrix M0 having one block per inde-

pendent region. The softening of boundaries takes the

form of adding a matrix M1 to M0 that has nonzero

entries outside the block structure of M0, thereby cou-

pling the previously separate eigenvalue problems of the

blocks. The appropriate tool for investigating this sit-

uation is the perturbation theory for linear operators

(see e.g. [14]) which we now briefly review.

Let M0 and M1 be self-adjoint linear operators on

the same vector space, and let (λi, vi) be the N-indexed

family of eigenpairs of M0. Then, for values of ε within a

certain radius of convergence, one can express the eigen-

values λ′i(ε) of the perturbed operator M0 + εM1 as a

Taylor series of the form λ′i(ε) = ε0λ
(0)
i + ε1λ

(1)
i + . . ..

The M0-eigenvalue λ
(0)
i := λi is shifted to become the

corresponding eigenvalue of the perturbed operator by

corrections of increasingly higher order in ε. Similarly,

the eigenvectors of the perturbed operator can be ex-

pressed as linear combinations of the complete basis

formed by the M0-eigenvectors:

v′i =
∑
j

vj

(
ε0c

(0)
ij + ε1c

(1)
ij + . . .

)
,

with c
(0)
ij = δij and c

(k)
ij being the k-th order correction

to the coefficient of the vector vj in the linear combi-

nation of the vector v′i.

To get a good approximation of how the spectrum of

M0 is perturbed by the addition of εM1 to become the

spectrum of M0 + εM1, it is often sufficient to consider

only the first few orders of approximation. The results

for λ(1), λ(2) and c(1) are given below.

– λ
(1)
i =

∑
j,k=1

vji · (M1)jk · vik = 〈vi|M1|vi〉.

If M1 is represented in the basis of the eigenvectors

of M0 as a Matrix M ′1, the coefficient for the first

order shift of the i-th eigenvalue is the i-th diagonal

element of M ′1. This means that the eigenvalue shift

for λi does not depend on the unperturbed eigen-

values, but only on M1 and one eigenfunction vi.

– λ
(2)
i =

∑
j 6=i

|〈vj |M1|vi〉|2
λi−λj

.

The second order shift of the i-th eigenvalue de-

pends on all other eigenpairs, but the contributions

of those eigenpairs can be considered separately, and

the contribution of a single eigenpair (λj , vj) is in-

versely proportional to the difference of the eigen-

values. Also, if M1 is a pure differential operator act-

ing only locally, the numerator |〈vj |M1|vi〉|2 will be

neglectable if the localization areas of the eigenfunc-

tions do not overlap significantly. Thus only those

eigenpairs perturb each other noticeably where lo-

calization areas overlap and eigenvalues are closely

together (relative to the overlap, as quantified by

|〈vj |M1|vi〉|2).

– c
(1)
ij =

〈vj |M1|vi〉
λi−λj

(but c
(1)
ii = 0).

The first order linear combination coefficients are

also inversely proportional to eigenvalue difference,

and they also increase with the overlap of the ei-

genfunctions. Thus we can can reason that up to

first order in ε, it is usually possible to approximate

the perturbed eigenvector v′i using only vi and a

few other eigenvectors that have overlap with vi (as

quantified by 〈vj |M1|vi〉) and belong to eigenvalues

near λi.

2.5 Role of symmetry

The approach to perturbation theory presented above

breaks down if eigenvalues are degenerate. In the con-

text of our application, degenerate eigenvalues typically

arise as a consequence of symmetries, such as one of the

regions having an internal symmetry, or two regions

being symmetric under exchange, i.e. having the same

shape.

Let M0 be a self-adjoint linear operator on a vector

space V and let λ be an n-fold degenerate eigenvalue

of M0. The eigenspace W = span {vi+1, . . . , vi+n} be-

longing to this eigenvalue is spanned by a basis of n

Eigenvectors vi+j , j ∈ {1, . . . , n}, but the choice of this

basis is ambiguous. Upon adding an infinitesimal per-

turbation εM1 that does not have this kind of symme-

try, the ambiguity breaks down. The resulting unam-

biguous eigenvectors are still infinitesimally close to W

and deviate from that only in second order of ε. The
Taylor series that tell how eigenvectors and eigenval-

ues of M0 + εM1 arise from those of M0 require a spe-

cific choice for the complete basis of M0-eigenvectors.

Most importantly this means that for the zeroth or-

der coefficients in the Taylor series for the perturbed

eigenvectors it is no longer valid to assume c
(0)
ij = δij

(this would mean eigenvectors are the same in zeroth

order), unless the chosen eigenvector basis of M0 is in-

deed infinitesimally close to that of M0 + εM1. The

correct choice of basis for applying perturbation theory

would be an eigenbasis of M0 which is, in first order

approximation, also a set of eigenvectors of M0 + εM1.

Restricted to the subspace W where M0 is degener-

ate, those are completely determined by M1 and can

be found by choosing a basis of W so that the projec-

tion P of M1 onto W becomes diagonal in this basis,

with P given by Pjk = 〈vi+j |M1|vi+k〉. The degenerate

eigenvalue of M0 then splits into several eigenvalues of

M0 + εM1 according to the first order approximation

λ′i+j = λ+ ε 〈vi+j |M1|vi+j〉.
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Since finding the correct basis when given some ei-

genbasis ofM0 involves an eigenvalue problem and there-

fore minimization of a Rayleigh quotient, we can expect

that the lowest of the resulting eigenvalues belongs to

an eigenvector that minimizes the Rayleigh quotient of

M0 + εM1 within W . The practical consequence for

our case would be this: Assume two subshapes S and

T that, regarded separately, happen to have a com-

mon eigenvalue λ(S) = λ(T ) with corresponding eigen-

vectors v(S) resp. v(T ), localized entirely on S resp. T

and with signs chosen so that they mostly align along

the boundary. If this situation is perturbed by weak-

ening the boundary between S and T , the eigenvalue

splits in two and the eigenvectors need to be combined

differently so as to give the correct eigenbasis. Speak-

ing in terms of zeroth order approximations, the lower

of the two eigenvalues will then typically belong to an

eigenfunction similar to v(S) + v(T ) (symmetric com-

bination), while the higher eigenvalue will belong to

the orthogonal v(S)−v(T ) (antisymmetric combination).

Symmetric combinations give rise to lower eigenvalues

of Laplacian-like operators because they avoid zeros at

the boundary, thereby increasing the absolute values

occurring in the denominator and decreasing the gra-

dients occurring in the numerator of the Rayleigh quo-

tient. Both the symmetric and antisymmetric combi-

nation will have similar localization density on either

shape: the eigenfunctions are delocalized. We remark

that physical manifestations of this phenomenon are

mechanical resonances and the tunnel effect: If the fre-

quencies resp. energy states of two systems are tuned to

each other, the energy of the vibration resp. the prob-

ability amplitude of the quantum particle is present in

both.

These consequences of degenerate eigenvalues are

also relevant for the case that two or more eigenvalues

of M0 are not equal, but close. This may be a conse-

quence of an approximate symmetry of the shapes in-

volved, or two shapes may have a common eigenvalue by

coincidence. Nearby eigenvalues can be seen as resulting

from a degenerate operator M−2 by perturbation with

an operator εM−1, yielding M0. Perturbing M0 by εM1

is thus the same as perturbing M−2 by ε(M−1 + M1).

The eigenvectors of M−1 and M−1 + M1 will in gen-

eral be different, so the perturbation by M−1 +M1 will

break the symmetry of M−2 differently than M−1 alone

did. A sufficiently strong additional perturbation M1

therefore can cause the eigenvectors of M0 belonging to

near-degenerate eigenvalues to mix in almost equal pro-

portions in order to yield the eigenvectors of M0+εM1.

As a result, symmetries will be broken differently, and

eigenfunctions may delocalize in completely different

ways.

Let F be the function that maps a perturbation of

the input image (represented by εM1) to the eigenvec-

tors of M0+εM1 and their localization densities. F can-

not be defined uniquely when M0+εM1 has degenerate

eigenvalues. These points are unlikely to be encountered

in practice because the spectra of matrices with degen-

erate eigenvalues have measure zero in the set of all

possible spectra of symmetric matrices. However, since

ε can be arbitrarily small in order to effect equally large

differences of the eigenvectors of M0 = M−2 + εM−1
and M0 + εM1 = M−2 + ε(M−1 + M1), the function

F is not Lipschitz continuous in the neighbourhood of

those points where it is not defined uniquely, even if

these points are excluded. The lesson from this is that

if we are going to rely on eigenvectors or localization

densities in order to perform partial matching, we must

be prepared for outliers and will easily loose Lipschitz

continuity of the distance measure.

3 A concrete example

This section presents a specific choice for the differen-

tial operator, as well as a localization density function

that can be derived from its Rayleigh quotient. We have

investigated and are still investigating other possibili-

ties for both of these, but the formulas proposed here

have some interesting properties and will suffice as an

initial example.

3.1 A modified Laplacian

Among the many possibilities of modifying the Lapla-

cian with additional terms that depend on an input im-

age, we will present here only one which displays several

interesting properties, both theoretically and in prelim-

inary experiments we have done to assess its potential

for image fingerprinting. We will simply call it Of , de-

fined by

Ofv := −e−2bf div
(
e2bf grad v

)
,

where f is the image grey-value function that paramet-

rizes the operator. It is derived from the more general

operator −ρ−1 divD grad by setting ρ = D = e2bf ,

where b is some positive real constant that regulates

the strength of the decoupling. The Rayleigh quotient

for this operator is∫
Ω
D|(grad v)(x)|2 dx∫
Ω
ρ|v(x)|2 dx

.

From this formulation, it is unfortunately not really

obvious how the eigenfunctions will behave.
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The Operator Of has a nice physical interpretation:

The time-dependent equation
..
v = −Of (v) describes the

propagation of an elastic scalar wave through a two-

dimensional membrane with locally varying mass den-

sity ρ and stiffnessD, as if the image f had been painted

on a drum with a special high-density-paint. The shape

of a stationary vibration on that drum is then given by

an eigenfunction of Of , while its frequency is the square

root of the corresponding eigenvalue.

The Newton-Laplace equation gives c =
√
D/ρ for

the speed of sound in homogeneous media. Ignoring

physical units and setting ρ = D means that in all

regions where f is constant, c is 1, regardless of the

value of f . For Laplacians restricted to two dimensional

shapes S, the eigenvalues are distributed on the posi-

tive real line with an approximately constant density

that is inversely proportional to the square root of the

area of S, and thus inversely proportional to the length

scale of S (Weyl’s law). Since c is also the ratio between

wavelength (proportional to scale) and frequency of a

wave, having constant c means that the eigendecompo-

sitions for the (in an ideal setting completely separate)

subshapes in an image are computed using the same lo-

cal conditions. When the boundaries are softened and

the eigenvalues of those shapes are joined into a single

spectrum (with some perturbations), we expect that

asymptotically the fraction of eigenvalues contributed

by a certain shape is proportional to the area square

root of that shape. A consequence for the resulting fin-

gerprinting algorithm is that shapes of equal area are

represented with similar weight in the fingerprint, and

with many distance measures for spectral fingerprints

this means that their similarities or dissimilarities have

similarly strong influence on the distance. This may be

desirable or not: if c was, say, higher for dark regions

in the input, then these would be underrepresented in

the fingerprint because the eigenvalues contributed by

them would be less dense in the overall spectrum. So if

emphasis of bright regions is desired, a different opera-

tor than the one with ρ = D should be used.

The operator Of may also be written as

Of (v) = −div grad v − 2b 〈grad f |grad v〉 .

This formulation explicitly shows that O is linear in the

input image f . It is also obviously invariant under con-

stant additive global changes of brightness in the input

image. More importantly, it shows that Of is just the

ordinary Laplacian with a term added. Referring back

to the considerations about Rayleigh quotients in sec-

tion 2.2, this term gives rise to a penalty term in the

Rayleigh quotient that implements softened boundary

conditions. However, the modified Laplacian given here

is not manifestly in the required form of a product of

two self adjoint operators. Our description of Rayleigh

quotients is therefore not directly applicable, and nei-

ther is perturbation theory for self adjoint operators. In

the next subsection, we will give a similarity transform

that yields a self-adjoint operator. What is already ev-

ident here is that the strength of the boundaries can

be controlled globally by b and is locally given by the

image gradient. Furthermore there is some asymmetry

regarding the direction of the image gradient.

The kind of approximate boundary conditions that

arise for this operator are most evident from the phys-

ical interpretation given above: if on one side of the

boundary mass density and stiffness are high compared

to the other side, then the boundary behaves approx-

imately as a free end (Neumann) of the heavier and

stiffer side, and as a fixed end (Dirichlet) to the lighter

and softer side.

3.2 Self-adjoint form

An operator O′f similar to Of can be obtained by the

similarity transform O′f = ebfOfe
−bf . The two opera-

tors are essentially the same, related by a simple change

of basis. They have the same eigenvalues, and all eigen-

functions are related by pointwise multiplication with

ebf . However, the operator O′f is self-adjoint, whereas

Of is not. This allows us both to apply our reason-

ing about perturbation theory for self-adjoint operators

and to write the Rayleigh quotient in a form where the

penalty term is explicit.

After some simplification, O′f takes the form

O′f (v) = −∆ v +
(
b∆ f + |b grad f |2

)
· v.

Note that this is no longer linear in the input image.

But it is simpler than Of in that it is the Laplacian,

perturbed by a pointwise multiplication operator1. The

Rayleigh quotient now becomes:∫
Ω
|grad v(x)|2 +

(
b(∆ f)(x) + |b(grad f)(x)|2

)
|v(x)|2 dx∫

Ω
|v(x)|2 dx

.

The penalty term in the numerator for each point x

is proportional both to the squared amplitude of v at

the point x and to the image dependent expression(
b∆ f + |b grad f |2

)
evaluated at x. So relative to the

unperturbed Laplacian, high amplitudes of the eigen-

functions are suppressed (approximate Dirichlet bound-

ary at edges) wherever the gradient of the image is

1 This is also the Hamiltonian of the Schrödinger equation
for a quantum particle moving in a potential. Motion is de-
scribed by the Laplacian and the potential is given by the
perturbation term.
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large, unless this is cancelled by a negative value of

the image Laplacian. The Laplacian of the input im-

age measures something like the second derivative of

grey-value perpendicular to an edge (this is exact only

for straight edges with translation invariant grey-value

profile). So on that side of the edge where values are

lower, the Laplacian will be positive, but after the in-

flection point of the grey-value profile it will be negative

and thus able to (partially) cancel out the gradient-

dependent summand in the penalty term. Without a

value-constraining boundary condition, the first term in

the numerator, stemming from the original Laplacian,

tells us that the gradient magnitude will be subject

to minimization (Neumann boundary). Note that this

derivation of the nature of the soft boundaries agrees

with the physical analogy given in the previous subsec-

tion.

3.3 Energy localization density

For the localization density we propose the formula

E(v)(x) := λ
∣∣∣ebf(x)v(x)

∣∣∣2 +
∣∣∣ebf(x)(grad v)(x)

∣∣∣2
in order to calculate the localization density measure of

an eigenfunction v of Of belonging to the eigenvalue λ.

For the sake of completeness, non-eigenfunctions should

also be given a localization density and using the eigen-

value does not meet the formal requirements given in

subsection 2.3 anyway. We can do so by making λ a

function that supplies fake “local eigenvalues” calcu-

lated according to λ(x) = − (e−2bf div e2bf grad v)(x)
v(x) , which

is constant for eigenfunctions.

This localization density has a straightforward phys-

ical explanation in terms of the energy distribution in a

vibrating membrane: The density of kinetic energy of a

membrane with mass density ρ and speed s is 1
2ρs

2. Re-

calling that the frequency of a stationary wave (whose

form is an eigenfunction) is proportional to the squared

eigenvalue, it is easy to see that at those instants in

time where the membrane is flat and moving fastest

because the z-coordinates of all points flip sign, s2 is

equal to λv(x)2. So the first term in the definition of

E(v)(x) is just twice the maximum kinetic energy den-

sity. On the other hand, there are moments when the

membrane’s speed is zero and its elongation is maxi-

mal. All the energy is then stored in the tension. Ac-

cording to Hooke’s law, this energy density is given by

1
2

∣∣∣√D grad v
∣∣∣2, where D is the stiffness constant. In the

membrane vibrating in an eigenmode, the energy peri-

odically changes shape between these two distributions.

Both potential and kinetic energy density are indicative

of localization. However, kinetic energy will always be

zero at the zeros of the eigenfunction, while potential

energy density will always be zero at the stationary

points (e.g. maxima and saddle points). Due to con-

servation of energy, the total kinetic energy equals the

total potential energy, so adding these two will give a

good balance and can be interpreted as time-averaged

energy density, as demonstrated in Fig. 1.

Fig. 1 Kinetic, potential and time-averaged energy density,
calculated for one of the eigenfunctions of the image from Fig.
3(b). Note how the kinetic and potential energy complement
each other so that their sum looks rather homogeneous.

Referring back to our remarks about localization

densities and Rayleigh quotients, we want to point out

that the potential and kinetic part of the energy den-

sity can indeed also be constructed from the Rayleigh

quotient equation

λ =

∫
Ω
D|(grad v)(x)|2 dx∫
Ω
ρ|v(x)|2 dx

by multiplying both sides with the denominator, so that

we obtain on the left (twice) the total kinetic energy and

on the right the total potential energy. Omitting the

integral signs then leads to the corresponding densities.

4 Implementation and results

A numerical testbed for the presented ideas has been

implemented in Java. Our program can apply a finite

difference discretization to a wide family of image-de-

pendent operators in order to find the eigendecompo-

sition using the SLEPc library [10]. The results in the

form of spectra, eigenfunctions, localization densities,

colocalization graphs and multidimensional scaling plots

of various distance measures applied to several images

can be visualized.

We have used this program to run several experi-

ments, some of which we describe below.
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Fig. 2 See text for explanation

4.1 Representation of shapes in spectrum

In this experiment, we construct a series of images pa-

rametrized by t ∈ [0, 1], showing a fuzzy black2 square

on a white3 background. For t = 0, the black square

is at the center, but as t increases it moves downward

while rotating. For each image in this sequence, we di-

agonalize the operator Of described above, with ρ =

D = 10−3f and Neumann boundary conditions on the

domain boundary. We plot the first 49 eigenvalues in

dependency of t. The graphs are colored according to

the localization area of the corresponding eigenfunction

as follows:

– The blue color channel indicates the degree of local-

ization inside the black square

– The red channel represents localization on the lower

40% of the white background

– The green channel likewise shows localization on the

upper 40% of the white background

– Colors mix additively. For example, yellow means

the eigenfunction is localized in equal parts on both

the lower and upper half of the background.

In the plot, several of the predicted behaviors of the

spectrum can be seen:

2 represented by the value 0
3 value 1

– The closed-form solution of the Laplacian eigenvalue

problem for a square with Neumann boundary con-

ditions gives eigenvalues proportional to numbers

m2 + n2, where m,n ∈ N ∪ {0} and 2-fold degen-

erate eigenvalues iff m 6= n. Indeed the blue line

segments can be found at or near heights that are

sums of two square numbers on the chosen scale.

– The blue lines belonging to eigenvalues of eigenfunc-

tions localized on the square stay more or less hor-

izontal, indicating that the spectrum contains in-

formation of the presence of a square in the input

image regardless of its position or orientation. They

are occasionally perturbed if they are approached

or crossed by eigenvalues belonging to the back-

ground. Then a mixing of colors can sometimes be

seen which indicates that the eigenfunctions are de-

localized. In the case of eigenvalues crossing past

each other, note that the lines in the plot do not

cross. Instead they swap colors while they briefly

approach each other in a hyperbola-like form.

– From t & 0.7 on, some of the blue lines start rising.

This is because the black square is starting to leave

the image domain, so that it is effectively no longer

a square. Nevertheless as long as it is approximately

shaped like a square, the subspectrum generated by

it is approximately that of a square, especially with

regard to the lower eigenvalues.

– The lines that are not blue are mostly either red

or green, indicating a tendency for eigenfunctions

to have significant localization in only one half of

the background. This is because the square causes a

constriction of the white background shape, which

in turn causes a weaker coupling between its subre-

gions. We can regard the upper and the lower half of

the background as separate shapes to some degree,

although there is no separating edge and coupling

among them is stronger then their coupling to the

square.

– Red line segments are rising, while green ones are

falling. This is because the lower half of the back-

ground gets compressed as the square moves down-

ward, while the upper half expands. The response of

the eigenvalues is a consequence of the fact that the

density of eigenvalues in the spectrum is inversely

related to the area of the shape they belong to.

– Other observations can be made, such as the non-

blue lines starting out as yellow quadruplets at the

left, or the presence of many one-colored non-blue

perturbation hyperbolas at t ≈ 0.8, where the black

square is rotated about 45◦. These phenomena can

be traced back to symmetries present in the image.
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4.2 Colocalization clusters

In the previous subsection, we used prior knowledge

about expected localization areas in order to show that

eigenfunctions are indeed localized there. Now we demon-

strate that colocalization relationships between eigen-

functions represent information about the composition

and spatial relationships of subregions.

Colocalization relationships of eigenfunctions will

be visualized as graphs where to each eigenfunction vi
corresponds a vertex xi. A 2D-embedding of the graph

is calculated as a solution of

∀i ∈ N,0 < i ≤ n : 0 =

n∑
j=1

xi − xj
|xi − xj |

· (dij − |xi − xj |) · sij

where

dij := max

{
1

100
, (1− ColocE(vi, vj))

2

}
is the desired distance of the nodes xi and xj and

sij :=
(ColocE(vi, vj) + 0.1)2√

i · j

is a weight factor that emphasizes eigenfunctions with

strong colocalization and low eigenvalues. Edges be-

tween the nodes are drawn depending on the strength

of the colocalization.

Fig. 3 shows an image containing a single black

shape on a white background and a graph made from

the first n = 76 eigenfunctions, obtained from the oper-

ator Of discussed above with ρ = D = 10−4·f . One can

see how clusters in the colocalization graph correspond

to parts of the image. Remarkably, regions that are not

separated by an edge, but are different subregions of

the same shape, are also represented by subclusters of

the two main clusters. Correspondences between the re-

gions in the graph and regions in the image have been

found manually by inspecting the localization densities

associated with the graph nodes. Most eigenfunctions

belong to a semantically relevant subarea of the image,

but there are exceptions, as expected from perturba-

tion theoretical considerations. For example, from the

fact that v41 and v42 are delocalized, have adjacent in-

dices and almost the same localization density, one cor-

rectly assumes that these two eigenfunctions are accord-

ing to subsection 2.5 approximately a symmetrical and

an antisymmetrical superposition of two eigenfunctions

of the Laplacian restricted to the black shape and the

background, respectively.

Setting ρ = D = 10−4·f leads to a relatively strong

decoupling and thus to only few delocalized eigenfunc-

tions. Increasing the coupling between the shapes will

cause the colocalization clusters to be not so neatly sep-

arable, as shown in Fig. 4. At ρ = D = 10−1·f , the clus-

ters are hardly visually distinguishable, at least in the

two-dimensional embedding. Nevertheless, the labeled

image regions from Fig. 3(b) can still be associated with

subregions of the graph, as shown in Fig. 5. Only the

nodes corresponding to region F , which is the smallest

in area and therefore worst-represented, are not clearly

grouped together.

It is not easy to see how b should be chosen: If it

is too large and the image is composed of many small

areas, most of which have no high-contrast boundary,

there will be many independent regions, each repre-

sented in the fingerprint by too few eigenvalues. But if

b is too small, the distinction between the fewer clearly

separated (groups of) regions is lost in the fingerprint.

Since changing b is equivalent to globally rescaling the

intensity values of the input image, we can instead ask

for an image normalization procedure.

4.3 Multiple shapes and the influence of shape

boundaries

When multiple shapes are present, the question arises

to what degree their eigenvalues perturb each other,

thereby obscuring the information about each shape’s

presence. As explained in subsection 2.5, this situation

is characterized by the delocalization of eigenfunctions

between shapes and will occur depending on the close-

ness of the eigenvalues and the coupling between the

subsystems. With the used operator, coupling is depen-

dent on the gradient. Therefore blurred edges as well as

edges with a smaller difference in grey value should lead

to delocalization of more eigenfunctions across those

edges. Sharp edges will lead to more eigenfunctions be-

ing exclusive to the enclosed area, thus yielding more

eigenvalues that depend only of this area’s form and

content.

Fig. 7 shows the results of a test involving three

types of boundary. As expected, the sharp high contrast

boundary around shape A leads to the least amount of

delocalization. Comparing shapes B and C, it seems

that the sharpness of an edge has less effect on delo-

calization than the contrast. In this example, the delo-

calized eigenfunctions of B and C are also present on

the background between these shapes. While it is the-

oretically possible that two different non-neighbouring

shapes can interact without much involvement of other

shapes between them, we expect such a resonance phe-

nomenon to be a rare coincidence because it requires

eigenvalues to be very close.
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(a) The demarcated regions of the graph contain eigenfunctions localized
on the associated image regions in Fig. 3(b). Region C is especially clearly
distinguishable because of its large area, which leads to many overlapping
eigenfunctions being localized there.

(b) The input image. Labels
have been inserted in order to es-
tablish correspondence of image
regions and colocalization clus-
ters in Fig. 3(a).

(c) Energy localization densities of selected representatives from the encircled clusters
in the graph. Cluster label and index of the eigenfunction are given within each image.
Here, G is used to label delocalized eigenfunctions.

Fig. 3 There are also substructures within the expected two main clusters, representing more detailed information about
the form of the regions. The clusters have been identified manually (see also Fig. 5) by measuring the colocalization with
functions localized in the respective image regions.
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(a) D = ρ = 10−4·f . (b) D = ρ = 10−3·f .

(c) D = ρ = 10−2·f . (d) D = ρ = 10−1·f .

Fig. 4 Increasingly worse cluster separation with increasing coupling. The form of the graph appears to change continu-
ously. Even in Fig. 4(d), the hardly visible clusters can be found at analogous places, as demonstrated in Fig. 5.

5 Conclusion and outlook

We have presented a promising approach for image fin-

gerprinting. It transfers known techniques for shape fin-

gerprinting to the setting of images. We have also shown

how one can understand what happens to the informa-

tion from the image and how it is represented in the

fingerprint. For this, we rely mainly on perturbation

theory, which to our knowledge has not been used be-

fore in the study of fingerprinting algorithms.

We introduced the concept of localization densities

and colocalizations. These are usefull in the description

the phenomenon of (de)localized eigenfunctions. The

pairwise colocalization of eigenfunctions gives us the

colocalization matrix as a new kind of fingerprint that

can be used in conjunction with the spectrum.

We showed a general strategy to construct eigen-

value problems with “softened boundary conditions”

within the domain, by viewing them as penalty terms
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(a) Region A (b) Region B

(c) Region C (d) Region D

(e) Region E (f) Region F

Fig. 5 In spite of the poor visibility of the cluster structure when ρ = D = 10−1·f , there is correspondence to image
regions. The nodes are highlighted in green according to their colocalization with a Gaussian density function which has
its maximum in the respective image region. Compare the relative positions of the encircled subgraphs with those from
Fig. 3(a).
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(a) Only eigenfunctions belonging to C are notably de-
localized. (Since the smallest eigenvalue is always 0, its
eigenfunction should not be counted)

(b) Another graph, this time using more eigenfunc-
tions. Several of the higher eigenfunctions are localized
on both the blurred shape and the grey shape, as well
as on parts of the background. Shape A has only some
spurious delocalized eigenfunctions.

Fig. 7 Two colocalization graphs were plotted based on Fig. 6, using a different number of eigenfunctions. The
operator and localization density function have ρ = D = 10−3·f . Labels indicating the main regions of the graph
and their association with image parts have been added.

Fig. 6 Input image for the colocalization graphs in Fig. 7:
Two black shapes (A and B) and one grey shape (C) on a
white background. One Black shape (B) has a blurred bound-
ary.

in the operator’s Rayleigh quotient minimization prob-

lem.

Fig. 8 outlines the algorithm for image comparison.

The step marked by (X) is where the the concrete op-

erator os chosen. From the many possible choices for

differential operators to be used with that approach, we

have so far presented and discussed just one, although

we are aware of some others that have noteworthy prop-

erties. A presentation and comparison of these, as well

as a more systematic design process for operators with

desired invariance- or sensibility- properties, is a topic

of further research.

Fig. 8 Diagram illustrating the steps of the image compari-
son algorithm at various levels of abstraction.
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Also in this publication we have focused on how to

get fingerprints from images, but did not go into de-

tails of fingerprint comparison. Of course the distance

function used to compare the fingerprints is very impor-

tant for the overall image comparison algorithm. Com-

monly when defining a distance functions for spectra,

a finite prefix is compared using an L2 norm, which is

sometimes weighted to account for the fact that higher

eigenvalues are more sensitive to noise (see e.g. [33]).

This illustrates that understanding the behavior of the

eigenfunctions helps to pick the right distance measure

for the fingerprints. In light of this, a wider range of

distance functions should be considered, because in-

sights gained from perturbation theory indicate that

some eigenvalues may be out of place and are better

not compared against the eigenvalue with the same in-

dex in the other spectrum. As this text is mostly about

fingerprinting, we only mention that we have so far ex-

perimented with simple edit distances on words over

R.

As the next step, we intend to extend our work to

color images, or more generally images valued in arbi-

trary feature vectors, such as texture information. A

preprocessing step to deal with textures is in order in

any case, as the color gradients occurring in textures

should not be regarded as edges. This preprocessing

step could also perform the normalization mentioned

in subsection 4.2, for example by enforcing a fixed rela-

tionship between contrast and scale, allowing high gra-

dients only on larger areas.

Another topic of research is the exploitation of co-

localization relationships between eigenfunctions. Here,

the possibility to perform partial matching by means
of matching the colocalization matrices deserves spe-

cial mention. But even without this ambitious goal in

mind, we expect that using colocalization information

will greatly enhance the discriminating power of the fin-

gerprints. We have noticed work that seems to point in

a similar direction in the related field of shape process-

ing [11,2]. Due to the formulation of our technique in

terms of differential geometry, we expect that our ap-

proach, although primarily concerned with planar im-

ages, is to some degree compatible with these and can

be transferred to the setting of surfaces painted with

e.g. texture or curvature information.

So far, our method is mostly in an early basic re-

search stage, although we keep in mind practical appli-

cability. Besides the research topics mentioned above,

developing a readily usable application from it would re-

quire a detailed investigation of parameter space and a

performance comparison with existing methods that are

based on entirely different approaches but perform sim-

ilar tasks of image comparison, matching, fingerprinting

or retrieval.

As an interesting side product, we found a way to

obtain smooth functions that adapt to the contours of

an image, namely the eigenfunctions and their local-

ization densities. They seem for the most part to be

robust to small perturbations like holes in a separating

edge. We plan to integrate them into the probabilis-

tic segmentation framework of [6]. In addition to gen-

eral benefits, we expect that they will help to prevent

the segment contour from leaking out of a not entirely

closed shape. Besides that, we assume that there are

other applications for such functions.
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14. Katō, T.: Perturbation theory for linear operators, vol.
132. Springer Verlag (1995)

15. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive rep-
resentation for local image descriptors. In: Computer Vi-
sion and Pattern Recognition, 2004., vol. 2, pp. II–506.
IEEE (2004)

16. Ko, K.H., Maekawa, T., Patrikalakis, N.M., Masuda, H.,
Wolter, F.-E.: Shape intrinsic fingerprints for free-form
object matching. In: Proceedings of the eighth ACM sym-
posium on Solid modeling and applications, pp. 196–207.
ACM (2003)

17. Ko, K.H., Maekawa, T., Patrikalakis, N.M., Masuda, H.,
Wolter, F.-E.: Shape intrinsic properties for free-form ob-
ject matching. Journal of Computing and Information
Science in Engineering 3(4), 325–333 (2003)

18. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans,
J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen,
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